In order to effectively improve numerical prediction level by using current models and data, the strategy and methodology of dynamical analogue prediction (DAP) is deeply studied in the present paper. A new idea to predict the prediction errors of dynamical model on the basis of historical analogue information is put forward so as to transform the dynamical prediction problem into the estimation problem of prediction errors. In terms of such an idea, a new prediction method of final analogue correction of errors (FACE) is developed. Furthermore, the FACE is applied to extra-seasonal prediction experiments on an operational atmosphere-ocean coupled general circulation model. Prediction results of summer mean circulation and total precipitation show that the FACE can to some extent reduce prediction errors, recover prediction variances, and improve prediction skills. Besides, sensitive experiments also show that predictions based on the FACE are evidently influenced by the number of analogues, analogue-selected variables and analogy metric.
REN HongLi1,2? & CHOU JiFan1 1 College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
The seasonal variability of cloud optical depth over northwestern China derived from Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Edition IB data from July 2002 to June 2004 is presented. The regions of interest are those with Asia monsoon influence, the Tianshan and Qilian Mountains, and the Taklimakan Desert. The results show that the instantaneous measurements presented here are much higher than the previous results derived from International Satellite Cloud Climatology Project (ISCCP) D2 monthly mean data. Generally the measurements of cloud optical depth are the highest in summer and the lowest in winter, however, Taklimakan Desert has the lowest measurements in autumn. The regional variation is quite significant over northwestern China.
The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the current initial value superimposed on the historical analogue reference state can be regarded as a prediction objective. Primary analyses show that under the condition of appending disturbances in model parameters, the model errors of ADM are much smaller than those of the pure dynamical model (PDM). The characteristics of predictability on the ADM in the Lorenz system are analyzed in phase space by conducting case studies and global experiments. The results show that the ADM can quite effectively reduce prediction errors and prolong the valid time of the prediction in most situations in contrast to the PDM, but when model errors are considerably small, the latter will be superior to the former. To overcome such a problem, the multi-reference-state updating can be applied to introduce the information of multi-analogue and update analogue and can exhibit exciting performance in the ADM.
On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.