A homogeneous-aligned, high-transmission, and fast-response liquid crystal display (LCD) with three-layer electrodes is proposed. The molecules of liquid crystals are more inclined to rotate above and between the pixel electrodes. This induces a much higher transmission than that of the cell driven by the fringe field switching method and a wide viewing angle simultaneously because of the combined fringe and in-plane electric fields. Furthermore, a trigger pulse voltage is applied between the top and common electrodes to forcibly align the liquid crystal molecules vertically to show the transient dark state, which results in a very fast turn-off time (-1 ms). With high degree of transmission and fast response time, this kind of LCD is a potential candidate for large LCD panels.
With ZnO nanorods doped in only one poly(vinyl alcohol)(PVA) layer,we observed different threshold voltages with reverse DC voltages for a liquid crystal cell.The length and diameter of the ZnO nanorod used in our experiment were about 180 nm and 20 nm,respectively.When the PVA layer on the anodic side was doped, the threshold voltage was larger than that of the pure cell;conversely,when the PVA layer on the cathodic side was doped,the threshold voltage was smaller than that of the pure cell.These results can be explained by the internal electric field model.We also observed a resonance phenomenon with a low frequency AC voltage.