Prognostics and health management (PHM) is very important to guarantee the reliability and safety of aerospace systems, and sensing and test are the precondition of PHM. Integrating design for testability into early design stage of system early design stage is deemed as a fundamental way to improve PHM performance, and testability model is the base of testability analysis and design. This paper discusses a hierarchical model-based approach to testability modeling and analysis for heading attitude system health management. Quantified directed graph, of which the nodes represent components and tests and the directed edges represent fault propagation paths, is used to describe fault-test dependency, and quantitative testability information is assigned to nodes and directed edges. The fault dependencies between nodes can be obtained by functional fault analysis methodology that captures the physical architecture and material flows such as energy, heat, data, and so on. By incorporating physics of failure models into component, the dynamic process of a failing or degrading component can be projected onto system behavior, i.e., system symptoms. Then, the analysis of extended failure modes, mechanisms and effects is utilized to construct fault evolution-test dependency. Using this integrated model, the designers and system analysts can assess the test suite's fault detectability, fault isolability and fault predictability. And heading attitude system application results show that the proposed model can support testability analysis and design for PHM very well.
Associating environmental stresses (ESs) with built-in test (BIT) output is an important means to help diagnose intermittent faults (IFs). Aiming at low efficiency in association of traditional time stress measurement device (TSMD), an association model is built. Thereafter, a novel approach is given to evaluate the integrated environmental stress (IES) level. Firstly, the selection principle and approach of main environmental stresses (MESs) and key characteristic parameters (KCPs) are presented based on fault mode, mechanism, and ESs analysis (FMMEA). Secondly, reference stress events (RSEs) are constructed by dividing IES into three stress levels according to its impact on faults; and then the association model between integrated environmental stress event (IESE) and BIT output is built. Thirdly, an interval grey association approach to evaluate IES level is proposed due to the interval number of IES value. Consequently, the association output can be obtained as well. Finally, a case study is presented to demonstrate the proposed approach. Results show the proposed model and approach are effective and feasible. This approach can be used to guide ESs measure, record, and association. It is well suited for on-line assistant diagnosis of faults, especially IFs.
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.
Sensor selection and optimization is one of the important parts in design for testability. To address the problems that the traditional sensor optimization selection model does not take the requirements of prognostics and health management especially fault prognostics for testability into account and does not consider the impacts of sensor actual attributes on fault detectability, a novel sensor optimization selection model is proposed. Firstly, a universal architecture for sensor selection and optimization is provided. Secondly, a new testability index named fault predictable rate is defined to describe fault prognostics requirements for testability. Thirdly, a sensor selection and optimization model for prognostics and health management is constructed, which takes sensor cost as objective function and the defined testability indexes as constraint conditions. Due to NP-hard property of the model, a generic algorithm is designed to obtain the optimal solution. At last, a case study is presented to demonstrate the sensor selection approach for a stable tracking servo platform. The application results and comparison analysis show the proposed model and algorithm are effective and feasible. This approach can be used to select sensors for prognostics and health management of any system.