A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, feed flow rate and feed concentration on the operating performance parameters: purity, recovery, productivity and desorbent consumption were studied. Operating conditions leading to more than 90% purity in both outlet streams have been identified, together with those achieving optimal performance. Regions leading to complete separation are observed and explained theoretically. As the mass-transfer effect was not considered, the triangle theory only gives initial guesses for the optimal operating conditions.
Chromatograms of tocopherol homologues were obtained by a column of analytical size (inner diameter (ID) 0.46 cm cm×10 cm) packed with silica gel. Adsorption isotherms and film mass-transfer coefficient were estimated from the chroma-tograms by using a general rate model, which considers axial dispersion, external mass-transfer and intraparticle diffusion. Based on the obtained isotherms and mass-transfer coefficient, the separation process of tocopherol homologues on simulated moving bed (SMB) was simulated using the same model. According to the simulated results, a mixture of α-, γ-, δ-tocopherols and other impurities was separated on an SMB equipment. The SMB equipment was composed of 8 columns of ID 2 cm×10 cm, with 2 columns in each section. The solid phase was silica gel, and the mobile phase was n-hexane/2-propanol (99/1 by volume). γ-and δ-tocopherols of purity greater than 98% were obtained with recovery greater than 98%. The effects of operating conditions (flow rates and switching time) on the performance of SMB were studied by both simulation and experiments. It was found that all the simulation results were quite close to the experimental results. We conclude that process development and optimization of operating conditions of SMB by simulation are feasible.