为在外形尺寸与码盘刻线数的双重限制下提升小型光电编码器的精度与分辨率,提出了一种基于坐标旋转计算法(Coordinate Rotation Digital Computer,CORDIC)的编码器细分方法。对现阶段众多电子学细分方法优缺点进行剖析,在细分原理的基础上分析误差产生原因,运用改进型CORDIC算法对运动不满一周期内的信号进行高精度细分处理。实验结果表明,相较于其他方法,最大最小峰谷差值分别减少了60″、20″、10″,均方根误差分别下降了77.1%、59.2%、36.4%,实现了高精度化和小型化。
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.