Electrospinning is a simple and versatile technique that uses electrostatic forces to create fbers in the nano o micro range from a variety of materials,both synthetic and natural Due to the high surface area to volume ratio,high porosity,and desirable mechanic characteristics of electrospun fbers,they are of current interest for a wide variety of applications.Some of the most signifcant applications of these fbers being researched include tissue engineering.drug delivery,wound dressings,environmental and energy applications,and protective materials.Notably,electrospun fbers may be specially tailored to better ft their fnal application through the direct 1oading of materials during the spining process as well as by choosing the correct base material for the fber.For example,it is desirable to use a biocompatible and biodegradable material in fibers desired for applications in the biomedical field;this way the fbers are able to safely interact with the human body.This review will explore the applications,as previously listed,with a focus on how fbers are made using carbohydrate polymers(such as alginate,cellulose and its derivatives,chitosan and chitin,starch,pul1ulan,hyaluronic acid,dextran,and 1evan)as their base material,and their applicability and functionality in various applications.
Lithium-ion batteries(LIBs)benefit from an effective electrolyte system design in both terms of their safety and energy storage capability.Herein,a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer(PS-PEO-PS),resulting in a porous structure with good interconnections,which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes(GPEs).It has been demonstrated that post-cross-linking of the precursor membranes increa ses the rigidity of the nanofibers,which allows the polymer film to be dimensionally sta ble up to 260℃while maintaining superior electrochemical properties.The obtained cross-linked GPEs(CGPEs)showed high ionic conductivity up to 4.53×10^(-3)S·cm^(-1).With the CGPE-25,the assembled Li/LiFeP04 half cells exhibited good rate capability and maintained a capacity of 99.4%and a coulombic efficiency of99.3%at 0.1 C.These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance,particularly useful for Lithium-ion battery applications that require high-temperature usage.
The creation of 3D nanofibers offering desirable functions for bone regeneration is developed due to the latest improvisations to the electrospinning technique.Synthetic polymers are among the best choices for medical usage due to their lower costs,high tensile properties,and ease of spinnability compared to natural polymers.In this communication,we report a series of interventions to polymers modified with Mg-based fillers for ideal tissue engineering applications.The literature survey indicated that these filler materials(e.g.,nano-sized particles)enhanced biocompatibility,antibacterial activity,tensile strength,and anti-corrosive properties.This review discusses electrospinning parameters,properties,and applications of the poly(ε-caprolactone),poly(lactic acid),poly(3-hydroxybutyric acid-co-3-hydroxy valeric acid),polyurethane,and poly(vinyl pyrrolidone)nanofibers when modified with Mg-based fillers.This report encourages researchers to use synthetic polymers with Mg as fillers and validate them for tissue engineering applications.
Corneal diseases,the second leading cause of global vision loss affecting over 10.5 million people,underscores the unmet demand for corneal tissue replacements.Given the scarcity of fresh donor corneas and the associated risks of immune rejection,corneal tissue engineering becomes imperative.Developing nanofibrous scaffolds that mimic the natural corneal structure is crucial for creating transparent and mechanically robust corneal equivalents in tissue engineering.Herein,Aloe Vera Extract(AVE)/Polycaprolactone(PCL)nanofibrous scaffolds were primed using electrospinning.The electrospun AVE/PCL fibers exhibit a smooth,bead-free morphology with a mean diameter of approximately 340±95 nm and appropriate light transparency.Mechanical measurements reveal Young’s modulus and ultimate tensile strength values of around 3.34 MPa and 4.58 MPa,respectively,within the range of stromal tissue.In addition,cell viability of AVE/PCL fibers was measured against Human Stromal Keratocyte Cells(HSKCs),and improved cell viability was observed.The cell-fiber interactions were investigated using scanning electron microscopy.In conclusion,the incorporation of Aloe Vera Extract enhances the mechanical,optical,hydrophilic,and biological properties of PCL fibers,positioning PCL/AVE fiber scaffolds as promising candidates for corneal stromal regeneration.
Background:Excessive exudate secreted from chronic wounds often leads to overhydration and infection.Although a variety of dressings are currently available in clinical applications,they frequently fail to provide multifunction to promote chronic wound healing.The dressings with a Janus structure,featuring distinct properties on each side,are potential to improve wound healing.Methods:Composite dressings with a Janus structure were fabricated,comprising freeze-dried polycaprolactone(PCL)electrospun membrane and alginate-based hydrogel.The PCL fibrous membrane provided air permeability,while the hydrogel loaded with Deferoxamine,composed of alginate and poly(N-isopropylacrylamide)(PNIPAM),exhibited hygroscopic properties.The inclusion of PNIPAM imparted thermo-responsivity.Results:The hydrogel(thickness of 2.778±0.082 mm)exhibited a robust adhesion to the fiber membrane(thickness of 0.261±0.041 mm).For ANDC(Alginate-PNIPAM hydrogel with Deferoxamine/PCL membrane)samples,the water vapor transmission rate(WVTR)was measured to be 3364.80±23.23 g∙m−2∙day−1 and the swelling ratio at 2 h was determined to be 1179±125%.The thermo-responsivity of ANDC samples manifested in an increased swelling rate,escalating from 797±189%at 37°C to 1132±147%at 4°C.The elastic modulus was assessed for lyophilized and rehydrated ANDC sample.When theωof the rheometer rotor was decreased from 10 rad/s to 0.1 rad/s,the lyophilized dressing exhibited a decrease from 2.65±0.01 MPa to 1.80±0.90 MPa,while the rehydrated dressing demonstrated an increase from 133.65±55.68 Pa to 264.23±141.71 Pa.The pro-healing properties of the dressings were evaluated using full-thickness skin defect model on SD rats,and a circular wound of diameter 10 mm healed completely by day 12.Conclusion:The dressings not only protected the wound and absorbed excess exudate,but also demonstrated nondestructive peelability upon cooling,providing a novel approach for accelerating wound healing and management.
Zi-Rui ZhuJia-Na HuangJin-Ze LiHao CaoZhao-Yi LinYan Li