The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms.Immunogenic cell death,such as pyroptosis and ferroptosis,can efficiently boost antitumor immunity.However,the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited.Herein,a multifunctional pH-responsive theranostic nanoplatform(M@P)is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(l:C),which are further encapsulated in amphiphilic polymers.This nanoplatform is found to have the characteristics of cancer cell targeting,pH response,near-infrared fluorescence imaging,and lysosome targeting.Therefore,after targeting lysosomes,M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation,triggering pyroptosis and ferroptosis of tumor cells,achieving immunogenic cell death,and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I:C).The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor immunogenicity.This research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.
Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.
Parathyroid hormone(PTH)has been used for bone regeneration through intermittent subcutaneous injection;however,the topical administration of PTH for bone repair remains challenging because of the overactivation of osteoclasts.Here,a PTH derivative,i.e.,PTHrP-1,which exhibits enhanced osteogenesis and relatively reduced osteoclastogenesis,is anchored to RADA16-I to fabricate a novel self-assembling peptide,called P1R16.Firstly,P1R16 self-assembles into long nanofibers with PTHrP-1 exposed to the side end,which interacts with Type I collagen(Col)to form P1R16-Col composites.The RADA16 segment in P1R16 helps the sustained release of P1R16 from the composites.Secondly,the P1R16 self-assembling peptide nanofibers exhibit multiple functions.The nanofibers promote stem cell proliferation and recruitment,and then direct stem cell fate towards osteogenic differentiation but not adpipogenic differentiation,improving the quality of the regenerated bone.The nanofibers further promote bone regeneration through bone remodeling between osteoblasts and osteoclasts.Thirdly,the P1R16 self-assembling peptide nanofibers also promote the proliferation and recruitment of endothelial cells,which facilitate the vascularization of implants to support bone regeneration further.Overall,the P1R16 self-assembling peptide nanofibers maintain multiple functions,including pro-proliferation,direction of stem cell fate,bone remodeling and vascularization,showing considerable promise for bone tissue engineering to repair bone defects or fractures.
Modular continuum robots possess significant versatility across various scenarios;however,conventional assembling methods typically rely on linear connection between modules.This limitation can impede the robotic interaction capabilities,especially in specific engineering applications.Herein,inspired by the assembling pattern between the femur and tibia in a human knee,we proposed a multidirectional assembling strategy.This strategy encompasses linear,oblique,and orthogonal connections,allowing a two-module continuum robot to undergo in-situ reconfiguration into three distinct initial configurations.To anticipate the final configuration resulting from diverse assembling patterns,we employed the positional formulation finite element framework to establish a mechanical model,and the theoretical results reveal that our customizable strategy can offer an effective route for robotic interactions.We showcased diverse assembling patterns for coping with interaction requirements.The experimental results indicate that our modular continuum robot not only reconfigures its initial profile in situ but also enables on-demand regulation of the final configuration.These capabilities provide a foundation for the future development of modular continuum robots,enabling them to be adaptable to diverse environments,particularly in unstructured surroundings.
Jie ZhangJiannan CaiKe MaJinzhao YangZhigang WuHaijun PengJianing Wu
Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectation.Herein,we demonstrate a competitive assembling strategy for the construction of metal-free graphite carbon nitride(CN)homojunctions in which morphology and composition can be easily controlled simultaneously by only changing the ratio of assembly raw materials.These homojunctions are comprised of porous nanotubular S-doped CN(SCN)grafted with CN nanovesicles,which are derived from thermal polycondensation of melamine-thiocyanuric acid(M-T)/melamine-cyanuric acid(M-C)supramolecular hybrid blocks.This unique architecture and component engineering endows the novel SCN-CN homojunction with abundant active sites,enhanced visible trapping ability,and intimate interface contact.As a result,the synthesized SCN-CN homojunctions demonstrate high photocatalytic activity for hydrogen evolution and pollutant degradation.This developed strategy opens up intriguing opportu-nities for the rational construction of intricate metal-free heterostructures with controllable architecture and interfacial contact for applications in energy-related fields.
Inverted(p-i-n)perovskite solar cells(PSCs)are favored by researchers owing to their superior compatibility with flexible substrates and tandem device fabrication.Additionally,the hole transport layer(HTL)serves as a template for perovskite growth,which is critical for enhancing the device performance.However,the current research on how the HTL promotes perovskite crystallization is insufficient.Here,4PADCB,a self-assembled monolayer(SAM)hole transport material,was optimized as a superior template for perovskite growth through comparative analysis;accordingly,compact perovskite film with vertical growth was prepared.The better matched energy level alignment between 4PADCB and perovskite suppressed nonradiative recombination at the interface and enabled rapid hole extraction.Moreover,high-quality perovskite film growth on 4PADCB exhibited lower Young's modulus and less residual stress.By integrating 4PADCB into p-i-n PSCs,the optimal device achieved a power conversion efficiency of 24.80%,with an open-circuit voltage of 1.156 V,thus achieving the best rank among devices without perovskite post-treatment,additives,dopants,or intermediate layers.Furthermore,the unencapsulated device demonstrated exceptional thermostability and photostability under maximum power point tracking.Thus,this work provides a new understanding for the development of novel SAMs and perovskite growth,and it is expected to further improve device performance.
Jun LiLisha XieShuncheng YangXinyu TongZhenwei PuMengjin YangYujie WuDaobin YangTao WangZiyi Ge