以双有源全桥(dual active bridge, DAB)DC-DC变换器为功率单元的输入串联输出并联(input series output parallel, ISOP)型直流变压器是直流配电网的关键部件,为了提高系统在输入电压脉动及负载突变工况下的动态响应速度和抗干扰能力,提出一种基于预估校正法(predictive correction method, PCM)的模型预测控制策略,通过分析并建立输入串联输出并联型双有源桥(input series output parallel dual active bridge ISOP-DAB)的数学模型,推导了变换器的状态空间平均方程,并采用PCM优化输入电压及输出电压的预测控制模型。同时,为了有效减少系统传感器的数量,提出无负载电流传感器的模型预测控制策略。所提出的策略有效提高了ISOP-DAB变换器的动态响应速度及抗干扰能力,且保证了各模块输入电压的均衡。最后,在RTDS中搭建两单元ISOP-DAB系统半实物仿真模型,实验结果验证了所提控制策略的正确性和有效性。
输入串联输出并联(inputseriesoutputparallel,ISOP)双有源桥(dualactivebridge,DAB)变换器的输入均压(input voltage sharing,IVS)主动控制策略存在控制系统复杂和传感器数量较多的问题。相反地,无源调控方法的控制系统简单,因而具有明显的优势。基于无源均压思想,提出一种适用于共占空比控制的基于耦合电容的ISOP-DAB变换器的输入电压自平衡拓扑结构,通过耦合电容使得子模块的高频链环节产生电气耦合,从而实现子模块输入电压的均衡。进一步,给出含有耦合电容的ISOP-DAB变换器的简化等效电路,并进行理论分析与推导,得到子模块输入母线电压偏差及耦合电容电流与变换器硬件参数的关系。理论计算表明该拓扑在子模块参数存在较大的偏差时仍然具有较好的IVS能力。最后,仿真和实验结果验证该拓扑的可行性和有效性。