金属有机框架(MOF)虽然具有完美的结晶性质,但由于其配位不饱和位点数量不足和电子传导性较低,这些特性限制了它在电催化领域的应用.尽管通过去除部分有机配体可以暴露晶体MOF的一些金属位点,但常用的方法涉及高压、高温、强酸、强碱等苛刻的条件,很容易造成MOF的多孔结构完全坍塌.相较于晶态MOF,非晶态MOF具有短程有序而长程无序的结构特征.通过快速组装MOF,有望实现MOF的非晶化,从而创造大量不饱和位点,并优化金属位点的电子结构.因此,开发高效的非晶态MOF合成策略十分必要.本文报道了一种诱导非晶态MOF在碳布上快速组装的电合成方法,制得了具有丰富活性位点和高电子传导性的非晶态MOF(记为aMnFc'/CC).在电合成过程中,有机配体在碳布上迅速去质子化,并与金属离子快速组装,形成具有大量配位不饱和Mn位点的非晶态aMnFc'.X射线衍射和透射电镜选区电子衍射结果表明,aMnFc'为无定形结构.电子顺磁共振和X射线吸收近边结构光谱等表明,aMnFc'比cMnFc'含有更多的不饱和Mn金属中心.随后,利用三电极体系评估催化剂在肼氧化(HzOR)中的催化活性,在0.1 mol L^(−1) PBS+0.4 mol L^(−1) N_(2)H_(4)电解质中,aMnFc'/CC的起始电位为287 mV(1 mA cm^(−2)),在10 mA cm^(−2)下的工作电势为667 mV,其活性远优于晶态MOF 起始电位为540 mV(1 mA cm^(−2)),在10 mA cm^(−2)下的工作电势为(871 mV).aMnFc'/CC在0.1 mol L^(−1) PBS中的HzOR性能优于大多数已报道的Mn/Fe基催化剂和MOFs催化剂.四探针法测定cMnFc'和aMnFc'的电导率分别为1.5×10^(−4)和1.8×10^(−3) S cm^(−2),表明MOF的非晶化可以提高电导率,从而增强其电化学性能.密度泛函理论计算表明,MnFc'-V在费米能级附近的态密度比MnFc'的态密度更强,说明不饱和Mn中心的存在增强了MOF的导电性.进一步通过理论计算研究了肼在MnFc'和MnFc'-V表面的逐步脱氢过程,结果�